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Ice streams are bands of fast-flowing ice in ice sheets.
We investigate their formation as an example of
spontaneous pattern formation, based on positive
feedbacks between dissipation and basal sliding.
Our focus is on temperature-dependent subtemperate
sliding, where faster sliding leads to enhanced
dissipation and hence warmer temperatures, weak-
ening the bed further, and on a similar feedback
driven by basal melt water production. Using a novel
thermomechanical model, we show that formation
of a steady pattern of fast and slow flow can
occur through the downstream amplification of noise
in basal conditions. This process can lead to the
establishment of a clearly defined ice stream separated
from slowly flowing, cold-based ice ridges by narrow
shear margins. Our model is also able to predict
the downstream widening of ice streams due to
dissipation and heat transport in these margins.
We also show that downward advection of cold
ice induced by accelerated sliding is the primary
stabilizing mechanism that can suppress ice steam
formation altogether, and give an approximate,
analytical criterion for pattern formation.

1. Introduction
Ice streams are narrow bands of fast flow within
otherwise more slowly flowing ice sheets, often forming
near the margin or grounding line of the ice sheet as
outlets that can carry the majority of the ice discharged
[1]. Some ice streams are confined to topographic lows
that channelize flow [2], but not all, and those that are not
controlled by topography may occur in parallel arrays
of similarly sized ice streams. Where bed topography
is not the primary control, several positive feedback
mechanisms have been suggested for the formation of an
alternating pattern of fast and slow flow.

2021 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 J

un
e 

20
21

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2020.0870&domain=pdf&date_stamp=2021-04-28
mailto:cschoof@eoas.ubc.ca
https://doi.org/10.6084/m9.figshare.c.5365211
https://doi.org/10.6084/m9.figshare.c.5365211
http://orcid.org/0000-0002-7532-2296
http://orcid.org/0000-0001-5096-7998


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200870

...........................................................

The viscosity of ice is temperature-dependent, and as a result there is a natural positive
feedback between dissipation, higher temperatures, reduced viscosity and faster flow, studied
in detail in [3] and likely the cause of often pathological pattern formation in early
thermomechanical ice sheet simulations (in the sense of grid-dependent results with no evidence
of a short-wavelength cut-off, see [4]). An alternative view holds that ice streams form as the
result of high water pressure (or more precisely, lower effective pressure, the difference between
normal stress and water pressure) at the ice sheet bed. This can cause pattern formation through
a hydromechanical positive feedback in which a reduced effective pressure leads to faster sliding
and more water production, which in turn requires effective pressure to be decreased further in
order to open basal drainage conduits to evacuate that water [5–7].

Situated somewhere between these two extremes is the possibility that sliding can occur before
the melting point has been reached at the base of the ice, when there is no liquid water. Friction
generated by such ‘subtemperate’ sliding is temperature-dependent [8,9], leading to a potential
positive feedback between raised temperature, faster flow and enhanced dissipation of heat. This
has been studied previously by Hindmarsh [10], though using a simplified model and ostensibly
as a way of emulating the dissipation–viscosity feedback described above.

Motivated by recent work [11] demonstrating that the transition from cold to temperate bed
must involve a region of subtemperate sliding, we revisit the possibility of pattern formation in
such a region. We abandon Hindmarsh’s [10] use of a depth-integrated model with no vertical
shear. This allows us to address two processes that are by construction absent from Hindmarsh’s
work: the effect of localized vertical heat transport in the onset region of an ice stream, and the
spontaneous formation of sharply defined margins that separate a rapidly sliding ice stream from
an ice ridge in which ice flow is dominated by a vertical shearing [12].

As Mantelli et al. [11] show in two dimensions, vertical advection of cold ice is key in
suppressing the feedback between sliding and a warming bed. As sliding gets faster in the
downstream direction, mass conservation dictates that ice higher in the ice column is drawn down
towards the bed. This steepens the basal temperature gradient and reduces the rate at which the
bed warms. In three dimensions, downstream acceleration need not be accompanied by the same
drawdown of cold ice, since a convergent lateral flow can play the same role in mass conservation.
This points to a key role played by vertical and lateral ice motion in the onset of fast ice flow.

We capture the detailed structure of the ice velocity through a novel model that couples a
standard description of quasi-uniaxial ice flow in an ice steam [12–20] with a description of the
much weaker secondary flow in the transverse plane, resolving vertical and lateral motions of ice
induced by variations in the main axial flow. This novel model arises at leading order from the
primitive Stokes flow equations for ice flow by scaling the lateral and vertical coordinate with ice
thickness, and the along-flow coordinate with the horizontal extent of the ice sheet, contrasting
with shallow ice models in which the lateral coordinate also scales with horizontal ice sheet extent.

We use this model to study the spontaneous formation of ice streams as a ‘spatial’ instability, in
which small perturbations in the basal friction coefficient or in upstream conditions are amplified
along the flow direction. This can break the symmetry of a nearly uniform flow cross-section at
the upstream end of the domain to generate a fully formed ice stream at the transition from a
subtemperate to a temperate bed.

A linear stability analysis provides a simple criterion for pattern formation through spatial
instability, while a numerical solution allows us to trace the evolution of that instability all the
way to ‘finite amplitude’, where small upstream perturbations have grown into an actual ice
stream. In addition to deciphering the positive and negative feedbacks involved, doing so allows
us to track the evolution of sharply defined ice stream margins. These margins separate, over a
distance of a few ice thicknesses, the distinct laterally sheared, plug-like flow of the ice stream
from the vertical shearing pattern of the ice ridges. The construction of our model is also such
that it captures the full leading-order physics of the margins, and allows us to trace the widening
of the ice stream in the downstream direction due to the outward migration of the shear margins.

Despite our focus on ice stream formation through positive feedbacks in subtemperate
sliding, our model turns out to be equally applicable to the hydromechanical patterning process
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described above. We apply the same techniques in abbreviated form to hydromechanical ice
stream formation, confirming that the fully evolved ice stream has qualitatively the same features
regardless of the sliding mechanism involved in its onset.

The paper is organized as follows: first, we develop the model (§2). In order to isolate the
basal dissipation feedback, we make ice viscosity independent of temperature. In fact, we use
a constant viscosity, though this is not an inherent feature of the model construction. Next,
we look for steady-state solutions of the model (§3a), which can be found uniquely by simple
forward integration from a central ice divide [21,22]. We show numerically that, depending
on parameter choices, small perturbations of basal properties can become amplified in the
downstream direction through either the dissipation-temperature or hydromechanical feedback
(§3c–e).

Next, we determine analytically a criterion for steady-state patterning to occur during
subtemperate sliding (§4), with additional results regarding hydromechanical patterning
confined to the electronic supplementary material. We conclude by putting our results in the
context of the existing literature (§5) and identifying pressing areas for future research (§6).

2. Model formulation
We use a dimensionless curvilinear coordinate system (x, y, z) in which the z-axis is oriented
vertically, x is oriented in the mean flow direction and y is transverse to the mean flow direction
(figure 1). For any fixed x, z = 0 corresponds to the elevation of the bed, which we assume to be
a given function of the downstream coordinate x only (a model extension to beds with lateral
variation is possible but not useful as a first step). The implied curvature of the coordinate system
is immaterial at leading order since the radius of curvature is comparable with the length of the ice
sheet and curvature terms scale as the ice sheet aspect ratio ε � 1. The coordinates (y, z) describing
position in the plane transverse to the main flow direction are scaled with a typical ice thickness
scale, and (despite the curvilinear nature of the coordinate system), the (y, z)-coordinate system is
Cartesian for fixed x. The along-flow coordinate is scaled with the length of the ice sheet.

Let ∇⊥ = (∂/∂y, ∂/∂z) be the gradient operator in the (y, z)-plane. Correspondingly, define
v⊥ = (v, w) as a transverse velocity field, scaled by the usual shearing velocity scale [23] multiplied
by the ice sheet aspect ratio ε, while u is the component of velocity in the main flow direction,
scaled with the shearing velocity scale. In other words, the ‘axial’ velocity u is physically much
larger than the secondary transverse flow velocity v⊥. Note also that we choose the horizontal
component v of transverse velocity to be parallel to the y-axis, but take w to be the velocity
component in the direction that is locally normal to the bed, rather than necessarily in the vertical
direction. This slightly unorthodox choice simplifies the boundary conditions on the flow problem
in transverse plane. A full derivation of the leading order model from first principles is given in
the supplementary material (§§S1–S2); here we proceed simply to state the model.

At leading order, surface elevation s above a fixed datum is a function of (x, t) only, where t is
time scaled with the advective time scale for the ice sheet. The secondary flow velocity v⊥ acts to
smooth out any leading-order lateral surface elevation variations extremely quickly, so we treat s
as independent of y. Let b(x) be bed elevation, and h(x, t) = s(x, t) − b(x) be ice thickness, both also
independent of y. Assuming the domain is periodic in y with period W, h satisfies

∂h
∂t

+ ∂Q
∂x

= ā, (2.1)

Q = W−1
∫W

0

∫ h

0
u dz dy (2.2)

and ā = W−1
∫W

0
a dy, (2.3)

where a is specific surface mass balance.
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Figure 1. Geometry of the leading order problem, with the notation used in themain paper. Note that the grey plane (tangent
to the secondary velocity field v⊥) is locally perpendicular to the bed, and not exactly parallel to the z-axis. This ensures that
w = 0 at the bed. The temperate portion of the bed, where T = 0 is shown in light blue, the cold portion in brown. Note also
that the surface elevation h is independent of the transverse coordinate y at leading order. (Online version in colour.)

The main along-flow velocity determining the ice flux Q satisfies the antiplane version of
Stokes’ equations, with the flow driven by a gradient in cryostatic pressure. With a constant
viscosity, u satisfies

∇2
⊥u = ∂(b + h)

∂x
. (2.4a)

We emphasize that (2.4a) omits extensional stresses, in line with the assumption that u varies
much more slowly in the along-flow direction (scaled with ice sheet length) than with across-flow
position (scaled with ice thickness). The boundary conditions on u ultimately couple the problem
of finding u and h to the transverse flow. At the surface, vanishing stress dictates that

∂u
∂z

= 0 (2.4b)

at z = h. At the bed z = 0, we assume a general friction law that incorporates dependence on
temperature and effective pressure,

∂u
∂z

= f (T, N, |u|)u
|u| , (2.4c)

where T is temperature scaled with the difference between melting point and a representative
surface temperature, and N is effective pressure (the difference between normal stress at the bed
and water pressure), scaled to result in an O(1) permeability in the drainage model that we will
describe shortly.

The function f (T, N, u) decreases with increasing T and increases or remains constant with
increasing N and |u|. f must also be non-negative, and with Q positive, it can be shown that u
will likewise be positive [24], so the modulus signs in (2.4c) are strictly speaking redundant. For
temperatures below the melting point, T < 0, we assume a linear friction law in sliding speed u,
with a temperature-dependent friction coefficient:

f (T, N, u) = γ (T)u, (2.5)

where the function γ takes an O(1) value γ (0) = γ0 at T = 0, and increases for decreasing T. We
define an associated temperature scale δ over which significant changes in friction coefficient
occur as δ = −γ (0)/γT(0). The subscript T here denotes differentiation with respect to temperature.
We will later use

γ (T) = γ0 exp
(

−T
δ

)
(2.6)

as a concrete example [9]. Physically, a law of the form (2.5) can be justified by shearing of a pre-
melted water film at the interface between ice and bed, with the thickness of that film increasing
as the melting point is approached [25]. Form drag [26] eventually replaces shearing across the
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premelted film as the main source of friction near the melting point, leading to a smooth friction
law with friction increasing with sliding velocity and decreasing with temperature.

Note that previous work on subtemperate sliding in [11] explicitly considered the limit δ � 1
of strong temperate sensitivity, which is however fraught with instabilities [27]. Here, we retain δ

as a nominally O(1) parameter, although we will be concerned primarily with the case of small δ

eventually: as we will show, taking the limit δ � 1 in the confines of our already reduced model
will be valid provided ε � δ2, where ε is the ice sheet aspect ratio.

Effective pressure does not enter into the friction law for T < 0, while at T = 0, we can identify
f (0, N, u) as a temperate, effective-pressure dependent friction law. In the limit of large effective
pressure N, the temperate friction law should agree with the subtemperate version γ (T)u as T
approaches the melting point,

lim
N→∞

f (0, N, u) = lim
T→0−

γ (T)u. (2.7)

Some of the choices we consider later are the following: a simple linear law [28–30] serves as a
control case in which dissipation of energy couples back to the flow of ice only through basal
temperature, but not through production of water (or latent heat)

f (0, N, u) = γ0u. (2.8)

Feedbacks between water production and ice flow require an N-dependent law. We use a
modified version of the commonly used power law f (0, N, u) = CuN [31], of the form

f (0, N, u) = γ0uN
Ns + N

. (2.9)

Division by (Ns + N) ensures that the condition (2.7) is met, and finite sliding velocities are
possible even at infinite effective pressure. Ns is a scale for the change from a friction law that is
independent of N when N � Ns to one that is sensitive to N for N � Ns. In addition, we consider
a regularized Coulomb friction law [32]

f (0, N, u) = μ0γ0uN
γ0u + μ0N

, (2.10)

where μ0 is a friction coefficient such that f (0, N, u) ∼ μ0N when γ0u � μ0N.
Temperature T in turn depends on the secondary transverse flow: even though the transverse

velocity is much smaller than the along-flow velocity, advection happens over much shorter
distances, and the along-flow and transverse advection terms both appear at the same order. The
heat equation becomes

Pe
(

∂T
∂t

+ v⊥ · ∇⊥T + u
∂T
∂x

)
− ∇2

⊥T = α|∇⊥u|2 (2.11)

for 0 < z < h, where the right-hand side is the appropriate leading-order shear heating term for
a constant viscosity. Pe is the Péclet number appropriate for advection along the length of the
ice sheet, and α is a dimensionless shear heating rate, or Brinkmann number. We treat Pe and
α as O(1) constants, as is appropriate for typical ice sheets. We do not incorporate a model for
temperate ice formation here [33,34]; this will be the subject of a separate publication, but we note
that none of the numerical solutions in §3b predict spurious positive temperatures that would
indicate the production of temperate ice. The heat equation has a counterpart in the ice sheet bed,

Pe
∂T
∂t

− ∇2
⊥T = 0 (2.12)

for z < 0.
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The transverse velocity satisfies a ‘two-and-a-half-dimensional’ version of Stokes’ equations.

∇2
⊥v⊥ − ∇⊥p = 0, ∇⊥ · v⊥ = −∂u

∂x
, (2.13)

where the usual incompressibility condition is augmented by an apparent source (or more likely,
loss) term due to accelerating flow in the x-direction.

Boundary conditions on v⊥ at the surface z = h are given by vanishing shear stress and the
local kinematic boundary condition,

− ∂h
∂x

∂u
∂y

+ ∂v

∂z
+ ∂w

∂y
= 0 (2.14)

and

w = u
∂h
∂x

− ∂Q
∂x

− (a − ā). (2.15)

The first term in (2.14) arises from the fact that the normal to the surface is not perfectly
aligned with the z-axis if there is a non-zero thickness gradient ∂h/∂x. Equation (2.15) results
from the width-integrated mass conservation equation (2.1) and the local kinematic condition,
∂h/∂t + u(∂h/∂x) = w + a, eliminating (∂h/∂t) − a between the two. In general, we will assume that
a does not vary significantly in the transverse direction, so (a − ā) = 0. Its retention may however
be relevant as a source of spatial ‘noise’ in the forcing of the problem, and contribute to pattern
formation.

The condition requiring normal stress to vanish at the surface turns into a diagnostic equation
that determines the correction ε2s1(x, y, t) to the mean surface elevation s(x, t): the corresponding
lateral surface elevation gradient drives the transverse flow v⊥, but need not actually be
computed to determine that velocity field. We have s1 = (p − (∂w/∂z))|z=h, where the right-hand
side can be evaluated once velocity and pressure have been determined.

At the base of the ice sheet z = 0, we have the same temperature-dependent friction law f
governing shear stress as for the axial flow (2.4), and a vanishing normal velocity

∂v

∂z
+ ∂w

∂y
= f (T, N, |u|) v

|u| (2.16)

and

w = 0. (2.17)

Note that |u| appears as the argument of f because sliding speed is dominated by the axial flow in
the x-direction.

The boundary conditions on the heat equation meanwhile take the form of a prescribed surface
temperature

T = Ts (2.18)

at z = h, where a uniform surface temperature would permit us to impose a constant Ts = −1. Far
below the bed, a prescribed heat flux is imposed,

− ∂T
∂z

→ G (2.19)

as z → −∞. At the bed z = 0, we have continuity of temperature and conservation of energy

[T]+− = 0 (2.20)

and
∂e
∂t

+ ∂qx

∂x
+ ∂qy

∂y
+
[
−∂T

∂z

]+

−
= f (T, N, |u|)|u|, (2.21)

where [·]+− denotes the difference between the limits of the bracketed quantities taken from above
and below z = 0, e is the latent heat content or enthalpy of the bed per unit area, and qx and qy are
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the components of latent heat flux along the bed. We also enforce that temperature cannot become
positive,

T ≤ 0 at z = 0. (2.22)

Latent heat takes the form of liquid water, so e is water content per unit area of the bed, while
qx and qy are components of water flux. We choose a macroporous drainage parametrization
[5,35] in which flux is linear in the hydraulic gradient, but with a permeability that depends on
temperature and effective pressure:

e =
{

0,
Φ(N),

qx =
⎧⎨
⎩

0,

−κ(N)
∂(h + r−1b)

∂x
,

qy =
⎧⎨
⎩

0 if T < 0,

−κ(N)
∂(σnn − βN)

∂y
if T = 0,

and σnn =
(

p − 2
∂w
∂z

)∣∣∣∣
z=0

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.23)
where κ and Φ are positive, decreasing functions of the effective pressure variable N. β is the ratio
of the effective pressure scale to the deviatoric stress scale, and we have defined effective pressure
as the difference between normal stress at the bed and water pressure in the bed. r = ρi/ρw is the
ice-to-water density ratio.

Note that the definition of e together with the constraint (2.22) ensures a Dirchlet condition on
temperature

T = 0 where e > 0. (2.24)

It is important to stress that the hydrology model above is a free boundary problem, with a
free boundary Γm separating the temperate subdomains at the bed (sets of points (x, y) at which
T(x, y, 0) = 0) from subtemperate subdomains (points at which T(x, y, 0) < 0, see also [12,16,19]).
Here (2.21) holds everywhere, but the effective pressure N is only strictly speaking defined on the
temperate subdomain, where it controls the flux (qx, qy) and bed water content Φ.

At the free boundary Γm, we distinguish between a growing temperate region and a shrinking
one. Consider a part of the free boundary at ym(x, t), and suppose without loss of generality that
the cold subdomain lies to the left of the boundary y = ym. For a growing temperate region, we
have V = ∂ym/∂t < 0, we assume that migration occurs only when heat flux is non-singular at
y = ym (so there is no singular freezing rate [−(∂T/∂z)]+−) as previously studied in [11,12,16,19]:

lim
y→y+

m

(
|ym − y|1/2

[
∂T
∂z

]+

−

)
≥ 0 if V < 0. (2.25)

Note that the local analysis around the transition point y = ym in [19] is applicable here, which
shows freezing will in general occur near the margin, but we can insist that freezing rates not be
singular if the ice stream is expanding (in which case the left-hand side of (2.25) is zero, see also
§2 of the electronic supplementary material). The condition (2.25) is mathematically analogous to
prescribing a vanishing fracture toughness in crack propagation problems [36], although applied
to the thermal rather than the mechanical problem. The condition must be stated explicitly as
part of the model since one could otherwise construct a solution purely mathematically in which
heat is siphoned out of the temperate region adjacent to the free boundary while the temperate
region is widening: in other words, a locally infinite rate of basal freezing occurs in these solutions
adjacent to the edge of a widening region of temperate bed, with the frozen-on water supplied
by the basal drainage system (see electronic supplementary material, §S2). Effectively, in these
solutions, water flows into areas that were frozen and forcibly warms them up in a similar
way to magma being injected into a dyke [37], instead of dissipation due to sliding or viscous
deformation of ice causing the previously frozen bed to thaw. Such water flow however seems
unphysical to us unless driven by overpressurization and hydrofracturing.

As shown in [12,16,19], the thermal problem alone then furnishes the migration rate V, and the
relevant boundary condition on the hydrology problem (2.21) inside the temperate region arises
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simply from the weak form of (2.21) as

lim
y→y+

m

(
Ve − qy + ∂ym

∂x
qx

)
= 0, (2.26)

ensuring conservation of energy at the boundary. For a shrinking temperate domain, a singular
heat flux is possible and the local form of the temperature field is not constrained at the boundary
(see appendix B of [16]), and we demand instead that bed water content reach zero

e = 0 at y = ym if V > 0 (2.27)

in addition to (2.26). It is worth stressing these constraints: some other hydrology models for
partially temperate beds [38] assume implicitly that water flux can penetrate into the cold portions
of the bed, effectively by imposing (2.26) combined with (2.27) in cases where the temperate
domain is expanding. We contend that doing so seems unphysical.

There is one remaining technical difficulty we need to address. Note that the direction (that
is, the sign) of the downstream flux qx is controlled purely by ice and bed geometry, and we
assume that the flux qx and velocity u are always oriented in the positive x-direction. From (2.4a),
the latter implies the surface slope (∂(h + b))/∂x is negative, and provided (r−1 − 1)(∂b/∂x) <

−(∂(h + b))/∂x, so is the gradient of the hydraulic potential in the x-direction in (2.23)2. All
this means is that we exclude retrograde slopes ∂b/∂x that are steep enough to pond water
permanently.

Where the bed first becomes temperate as we move along the x-axis, the boundary of the
temperate domain is locally perpendicular to the x-axis, and (2.26) becomes instead

Vxe + qx = 0 (2.28)

where Vx is the rate at which the transition point moves along the x-axis. If Vx ≤ 0 (a transition
point that is static or moving upstream) then requires that qx = 0 since e ≥ 0 and qx cannot
be negative. With a positive hydraulic gradient that is independent of N, a vanishing flux is
however only possible if the permeability κ(N) = 0. For simplicity, we assume that κ → 0 and
e → 0 as N → ∞: vanishing downstream flux occurs at infinite effective pressure. This is of
course a mathematical idealization: effective pressure does not really become infinite at the cold-
temperate boundary, merely much larger than it is in the remainder of the temperate region (see
the electronic supplementary material, §S1.2 for further detail). As we assume that e = Φ(N) goes
to zero as N → ∞, note also that equation (2.27) corresponds to N → ∞ at an inward-migrating
margin.

The singular behaviour associated with letting κ(N) → 0, however, makes it challenging to use
N as the dependent variable computationally: consider for example a power-law permeability
κ ∼ N−k for some k > 1. When dealing with the fluxes qx and qy near a cold-temperate boundary,
we may have to deal with the product of a very large gradient ∂N/∂y with a very small
permeability κ(N). To avoid these issues, we transform to an auxiliary hydrological variable Π (N)
defined through dΠ/dN = −(k − 1)κ(N) as described in appendix B.

3. Steady-state solutions

(a) Method of solution
Section 2 is the minimal version of a systematically reduced model capable of capturing the
thermally controlled onset of sliding, if we treat all model parameters formally as being O(1).
The model remains rather complicated and may appear to have few advantages over a standard
ice sheet model using Stokes’ equations for ice flow, for which there are established numerical
methods. The primary reason for using our alternative model is the relatively easy computation
of steady-state solutions by a simple forward integration in x from an ice divide.

This initial value problem in x is structurally analogous to the solution of a two-dimensional
ice sheet with subtemperate sliding in the limit of a small temperature activation scale δ in [11],
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and to earlier work in [5,21,22]. By contrast, for a fully configured ‘standard’ ice sheet model, we
would have to rely on computationally costly forward integration in time until a steady state is
reached, and the necessary spatial resolution could prove prohibitive for a Stokes flow solver.

Before we proceed, two technical points: first, the specification of margin migration physics in
(2.25)–(2.27) provides conditions that must hold at the free boundary Γm depending on whether
it is migrating into the cold or temperate bed portions, but does not uniquely specify how a static
margin should behave. Here we make the following assumption, based on the time-like nature
of x: where the margin moves into the cold bed moving downstream (rather than forward in
time), we assume that (2.25) and (2.26) holds, while at locations where the margin moves into
the temperate region on going downstream, (2.26) and (2.27) holds (with V = 0 in both cases).
Second, we have chosen to omit the normal stress term σnn from (2.23)3 purely for numerical
reasons, since incorporation of this term requires higher smoothness of the Stokes flow solver
used. Omission of σnn is equivalent to the widely made, but inaccurate, assumption of a cryostatic
normal stress. Its implications are discussed further in electronic supplementary material,
§§S3.3 and S5.7.

Superficially, it is useful to think of the steady-state problem as akin to a reaction–diffusion
problem, with x acting as a time-like variable in the heat equation (2.11), and basal dissipation
acting as the reaction term. To understand in more detail how the problem can be solved as an
initial value problem in x, observe the following: given current (at prescribed x) basal conditions
specified by T and N and current thickness h, (2.2) and (2.4) define u and dh/ dx given a known
flux Q = ∫z

0 ā(x′) dx′, dh/ dx, with dh/ dx independent of y or z. To evolve T, (2.2) and (2.4) have to
be solved in concert with (2.11) and (2.12) (omitting the time derivative), and boundary conditions
(2.18)–(2.20) and either (2.21) where T < 0 or (2.24) when e > 0. Where e > 0, we simultaneously
need to solve (2.21), with the time derivative omitted, as an evolution equation (in x) for N, with
constitutive relations (2.23) and boundary condition (2.26).

If h, T and N are given, then u can be computed and all forcing terms in (2.11), (2.21) and their
boundary conditions are known, bar the secondary flow velocity v⊥. The latter is determined by
(2.13) for v⊥ and p combined with boundary conditions (2.14) and (2.15) (with −(∂Q/∂x) − (a − ā)
replaced by −a in the latter for a steady state solution), and (2.16) and (2.17). These need to be
solved simultaneously with the heat equation and the basal hydrology problem to evolve T and
N. Again, almost all forcing terms in the secondary flow problem for v⊥ and p are known given
the current T and N, except ∂u/∂x: while we have a recipe for computing u, we do not yet have a
means of computing its derivative in the time-like direction.

To see how this is no bar to forward integration, note that by differentiating both (2.2) and
(2.4) with respect to x, we obtain a problem relating ∂u/∂x and d2h/ dx2, of linear elliptic type in
∂u/∂x, to the unknown derivatives of basal conditions ∂N/∂x, ∂T/∂x and the known derivative
dQ/ dx = W−1 ∫W

0 a dy (as well as the current state variables T and N and the current solution u
that can be computed from them):

∇2
⊥

∂u
∂x

= − d2(h + b)
dx2 on 0 < z < h,

∂

∂z

(
∂u
∂x

)
= 0 at z = h

∂

∂z

(
∂u
∂x

)
= fT(T, N, u)

∂T
∂x

+ fN(T, N, u)
∂N
∂x

+ fu(T, N, u)
∂u
∂x

at z = 0

and
dQ
dx

= W−1
∫W

0

∫ h

0

∂u
∂x

dz dy,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where we have made use of the assumption that Q > 0 and hence u > 0 to simplify matters, and
we have used subscripts to indicate differentiation of f with respect to the subscripted variable.
In other words, we can solve for ∂u/∂x and d2h/ dx2 at the same time as finding ∂T/∂x, ∂N/∂x
and v⊥.

Key to the procedure is that h and therefore its derivatives are functions of x only and can
therefore be solved for using the constraint of a known flux Q. This is ultimately what allows an
initial value solver to be used: if we relax our geometry, then a two-dimensional boundary value
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problem of arises for h(x, y) (or s1, see §5 and the electronic supplementary material §S5.9–5.10),
and the efficient numerical method proposed here no longer applies.

In practice, we semi-discretize the steady-state model in x using upwinded finite differences,
equivalent to a backward Euler step in x, having made the change of variables for N described
in appendix B. We use an operator splitting to keep track of the parts of the bed z = 0 that are
at or below the melting point (see also [33]). Each of the resulting partial differential equations
is elliptic in one of the dependent variables. The electronic supplementary material, §S3 details
the full system of coupled partial differential equations, where we use y and a stretched vertical
coordinate ζ = z/h as independent variables. We discretize fully using finite volumes in (y, ζ ), and
solve at each step using Newton’s method to handle nonlinearities. The necessary divergence-
form formulation for the heat equation in terms of ζ is given in appendix A because it may
be of independent interest in ice sheet modelling [39–41]. Similarly, we use a formulation of
the compressible Stokes flow problem (2.13) in terms of a stream function as described in the
electronic supplementary material, §S3, while steps taken to test the code are described in §S3.4
of the electronic supplementary material.

Note that the forward integration in x requires upstream boundary conditions, which we
assume to be given by an ice divide. The construction of an ice divide solution without lateral
structure, but taking account of subtemperate sliding, is described in §S3.5 of the electronic
supplementary material (see also [40]). These initial conditions require ice thickness h(0) to be
prescribed at the ice divide. h(0) is ultimately constrained by the need to satisfy boundary
conditions at a downstream ice margin [11,21,22]. For a marine-terminating ice sheet, margin
location xg and divide thickness h(0) are determined by two conditions at the downstream
margin, which we can then equate with a grounding line (as was also done in [11]): flotation
h(xg) = −r−1b(xg), and a flux condition Q(xg) = Qg(h(xg)), where the function Qg is computed
from a boundary layer theory for marine ice sheets [16,42]. Our primary interest here is not in
conditions at the margin. In order to avoid an unnecessarily costly shooting solution for h(0), we
therefore use the following construction: given h(0), the solution for h is invariant under a shift of
bed elevation b �→ b + b0 for constant b0. If we simply prescribe h(0), then we can use the constraint
Q(xg) = Qg(h(xg)) to determine the location xg, and subsequently compute the bed elevation shift
required to satisfy the flotation condition at that location as b0 = rh(xg) − b(xg).

(b) Two dimensions
Figure 2 shows two examples of two-dimensional solutions with no lateral structure, obtained
by requiring all dependent variables as well as the forcing term a to be independent of y. These
solutions are a generalization of the results in fig. 6 of [11], where solutions are computed for
the formal asymptotic limit δ � 1 of highly temperature-sensitive sliding. In that case, a sharply
defined subtemperate region separates a cold-bedded region upstream from a temperate-bedded
region downstream. In the subtemperate region, bed temperature differs by ∼ δ � 1 from the
melting point, but sliding occurs at a rate that is slower than for fully temperate bed conditions:
sliding velocity is instead controlled by the need to maintain energy balance. This is distinct from
the temperate bed, which generally has a net positive energy balance, leading to melting.

Figure 2 shows that, for small but finite δ, we obtain a similar thermal and velocity structure
to those computed in [11]. A more systematic demonstration of convergence to the limiting form
of [11] as δ → 0 is given in the electronic supplementary material, §S3. For small but finite δ, we
again find an extensive region of significant sliding upstream of the transition to a fully temperate
bed, indicated by the dashed vertical lines, with bed temperatures close to but below the melting
point.

We use two different parameter combinations in figure 2 as reference cases: column a shows an
ice sheet in which sliding is relatively fast (with smaller γ0), while column b shows an ice sheet in
which sliding at the onset of the temperate bed is still slow (with a larger γ0). The corresponding
subtemperate regions are of very different extents, with a longer subtemperate region required
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Figure 2. Two-dimensional reference solutions. (a1) and (b1) showvelocity profiles (ugiven by solid contours, contour interval 1,
background shading) and streamlines (dashed lines) for two different, two-dimensional steady-state solutions. Vertical dotted
lines demarcate the region in which there is significant sliding at subtemperate basal temperatures (that is, T within a small
amount∼ δ of themelting point, at which (2.6) permits significant sliding).We use a numerical value of δ = 0.03 throughout
the paper. (a2) and (b2) show the corresponding temperature profiles (white contours, background shading, contour interval
of 0.2). Both examples use Pe= α = a= 1, G = 0.5, Ts = −1, db/dx = 0.05, and put γ0 = 0.1, h(0)= 1.5 (column a,
referred to in the text as reference case 1) andγ0 = 3, h(0)= 2 (column b, reference case 2). Both examples use the temperate
friction law (2.8). (Online version in colour.)

to reach temperate conditions for the ice sheet that is able to slide faster. We refer to these two
reference cases as ‘1’ and ‘2’, respectively. In both, we use the simple linear friction law (2.8).

(c) Three dimensions: pattern formation
Next, we use the same parameter values but solve for the steady ice sheet in three dimensions,
introducing a small amount of stochastic noise to the basal sliding coefficient in the subtemperate
region, so that γ = γ0(1 + ε(x, y)) exp(−T/δ), where ε(x, y) is a small white noise term (note that ε

is not the same as the aspect ratio ε).
An along-flow profile as in figure 2 no longer universally captures the structure that emerges.

Figure 3a shows a map of basal temperature against (x, y), obtained for case 1 with stochastic noise
applied to γ . There remains an extended subtemperate region from x ≈ 0.7 to x ≈ 1.55, with basal
temperatures slowly increasing as we move away from the ice divide. Instead of the transition to
a simple temperate bed at x ≈ 1.75 in figure 2a, a laterally differentiated pattern rapidly emerges
around x ≈ 1.4 in the three-dimensional calculation, upstream of the subtemperate–temperate
transition for the two-dimensional solution. Note that the emergence of this pattern may appear
abrupt, but figure 3b reveals that lateral variations in bed temperature actually start to grow a
significant distance upstream of the location where we see them.

The pattern takes the form of a bulge-like region of temperate bed (figure 3a), flanked by
regions of basal temperatures that initially decrease with distance downstream. The streamlines
for flow at the ice sheet bed also indicate that the flow of ice converges towards the temperate
bulge at its onset: this pattern is a somewhat weakly developed ice stream surrounded by
incipient ice ridges. Further downstream, the ice ridge peters out and the bed becomes temperate
across the entire domain width. Note that here, as in all other calculations in this paper showing
formation of a pattern, we find a single temperate ‘bulge’ per domain width. That is no accident,
as we will show in §4 and discuss further in §5.

The formation of the bulge of temperate bed is superficially simple to understand as being
the result of a positive feedback between faster sliding at warmer temperatures and greater
dissipation of heat at the bed (see §4). The pattern formation process is broadly speaking the
same as in Hindmarsh [10], who however uses the limit of fast sliding throughout the ice sheet,
which affects margin formation and suppresses possible negative feedbacks. We discuss these
model differences further in §5 and the electronic supplementary material, §S5.6.
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Figure 3. A three-dimensional solution, same parameter choices as figure 2a. (a) Contours of temperature T (solid lines, also
background shading) andΠ (dashed lines) defined by (B2) with k0 = 4/3 andΠ0 = 0.1,β = 1. Contour levels are 0.02 for
T , 0.04 forΠ , the subtemperate-temperate boundary is marked in pink. Solid grey lines are streamlines of velocity at the bed.
Recall that the plan aspect ratio of the plot is not meaningful: y is measured relative to an ice thickness scale length, x relative
to an ice sheet scale length: the evident ice stream pattern is highly elongated in reality. (b) Basal temperature against x for
the solution in figure 2a (solid black) and along the centre line y = 7.5 in panel 3a (dashed black), and the variance in basal
temperature with respect to y against x (blue, see equation (4.14); note the logarithmic vertical scale on the right-hand axes).
The red dashed curve shows an analytical prediction of the same variance, see equation (4.15), with the black dotted vertical
line marking the location whereΛ defined in (4.12) is zero. (Online version in colour.)

Figure 4 shows a close-up of the ice-stream-ice-ridge structure for two cases, the case 1
calculation also shown in figure 3, and a second calculation with the same parameter choices,
but with the sliding law switched to a regularized Coulomb friction law (2.10) in the temperate
region. Since the solution is obtained by a forward integration in x, the plots are identical up to the
point where the bed becomes temperate. In addition to basal temperature, each column now also
shows basal velocity, confirming that sliding velocities are elevated in the ice stream and continue
to increase in the downstream direction.

We see that the choice of sliding law makes a major difference to the downstream development
of the ice stream. For the linear friction law (column a), the margins of the somewhat indistinct
ice stream widen more significantly in the downstream direction and ultimately disappear. Here,
the meltwater produced due to dissipation in the ice stream does not feed back into the motion
of the ice stream. For the effective-pressure-sensitive Coulomb law (column b), the ice stream
is much longer and more clearly defined, bordered by ice ridges whose basal temperatures are
much colder than anywhere else in the domain. Unlike the case of the linear friction law in
column a, these ice ridge temperatures also continue to decrease with distance downstream.
Ice flow converges more sharply into the ice stream for the Coulomb friction solution, and
velocity increases much more significantly along the narrower ice stream trunk, whose margins
widen only by a small amount. It is likely that the downstream acceleration of the ice stream is
responsible, drawing in more ice from the surrounding ice ridges as it lowers the ice surface in the
stream, and the attendant lateral heat transport prevents the margins from migrating outwards,
and also accounts for the intense cooling of the bed in the ice ridges (see also [12,19]).

Importantly, elevated velocities prevail in the region outside of the temperate bed demarcated
by the pink lines: in the margins of the ice stream, there is a portion of bed with significant
subtemperate sliding (see also [19]). Sliding is only significantly suppressed where a sharp lateral
temperature gradient is evident at the lateral edge of the ice ridge in the Coulomb friction case
(the edge of the dark blue areas in figure 4b2).

In addition to the choice of sliding law, the hydrology model also affects the fully evolved ice
stream, although to a much lesser extent. Figure 5 shows solutions for the regularized Coulomb
friction law in figure 4b, but with different choices of the diffusion parameter β that controls
how lateral effective pressure gradients drive the flow of water. As in figures 3 and 4, dashed
lines in panel (b) show contours of the proxy variable Π ∼ N−(k0−1) defined in appendix B for a
permeability function κ(N) = N−k0 ; plotting Π rather than N has the advantage that Π remains
bounded and contours do not become tightly bunched. Key here is to remember that large Π

corresponds to small N and vice versa. The dashed line in panel (a) is the T = 0 contour.
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Figure 4. Three-dimensional solutions with different sliding laws: column (a) shows the same solution as figure 3, column
(b) uses the regularized Coulomb friction law withμ0 = 0.005,Π0 = 0.01; all other parameter values are identical. Row 2
uses the same plotting scheme and colour scales as figure 3a with contour intervals of 0.05 for T and 0.04 Π . Row 1 shows
contours of axial velocity u at the bed (as well as background shading), with contour interval 0.45. The pink curve is still the
subtemperate–temperate boundary, grey streamlines show velocity at the bed. (Online version in colour.)

The effect of β on hydrology is obvious in panel (b): for a widening ice stream, the effective
pressure proxy Π does not generally go to zero near the edge of the temperate region, though Π

is small there for small diffusivities β, implying that large effective pressures N are reached. In that
case, there are significant lateral gradients in Π (or N) across the ice stream. For large diffusivities,
Π (and therefore N) becomes nearly constant across the width of the ice stream: lateral drainage
is highly efficient then, and ensures insignificant variations in effective pressure.

As a corollary, we also see that Π initially becomes noticeably larger in the centre of the
ice stream for small lateral diffusivity β, corresponding to smaller effective pressure N. The
transverse Π -profile becomes double-peaked further downstream, with two off-centre maxima
(around x ≈ 1.9 in figure 5b), corresponding to a double minimum in N. This is again more
pronounced when a low diffusivity β prevents effective pressures from being smoothed out
laterally, but the double peaks result from englacial dissipation: strong shearing near the margins
of the widened ice stream warms the ice (though never to the melting point in these solutions).
Advection carries this warmer ice towards the centre of the ice stream, and the reduced
conductive heat flux at the bed causes additional melting at an intermediate position between
margin and ice stream centre, leading to the observed effective pressure distribution.

Despite the differences in hydrology, the velocity field is not impacted significantly (panel a).
Smaller values of β tend to correspond to slightly larger velocities, especially upstream, where
the pronounced centre line maximum in Π (or minimum in N) weakens the bed. By contrast,
ice streams with larger β and effective lateral drainage initially widen slightly more in the
downstream direction. This probably occurs because more efficient drainage reduces basal
friction towards the edges of the ice stream and thereby concentrates dissipation in the margins
themselves, facilitating outward migration [12,16,19]. Even these slight differences disappear
further downstream where the local maxima in Π are closer to the margins.

(d) Cross sections
We can gain greater insight into the nonlinear pattern forming process by looking at the patterns
of axial flow and englacial dissipation as well as of the transverse secondary flow. Figure 6
illustrates these for the ice stream in figure 4b, for which we plot cross sections across the domain
at the locations marked by letters A–D in column (b) of figure 4.
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Figure 5. The effect of basal hydrology: solutions of the same problem as column (b) in figure 4, but with different values of
lateral diffusivitiesβ as indicated in the figure legend. (a) Contours of axial velocity as solid lines, contour interval 1, the dashed
line is the subtemperate-temperate boundary. (b) Contours of temperature as solid lineswith contour interval 0.1,Π as dashed
lines with contour interval 0.035. Contour lines are colour-coded as indicated in the key in (a). (Online version in colour.)

Each column of figure 6 corresponds to one of these cross sections, identified by the
corresponding letter label. The top row displays isolines of the axial strain rate ux = ∂u/∂x, also
indicated by the background colour shading, while the solid white curves are streamlines of the
transverse velocity field v⊥. The middle row shows isolines of temperature in black, also indicated
by the background colour shading. The pink contour indicates the melting point T = 0. Dashed
contours are velocity isolines, while white contours indicate strain heating rate α|∇⊥u|2. In all
cases, contour intervals are consistent between columns A–D, and in order to illustrate the surface
correction s1 = (p − (∂w/∂z))|z=h, we use (1 + ε2s1(x, y))z as the vertical coordinate for plotting
purposes, arbitrarily using a fairly large value ε = 0.015 for clarity.

The bottom panel shows aspects of the energy balance of the bed: blue solid and dashed
lines are heat fluxes −(∂T/∂z) at z = 0, computed in the ice and the bed, respectively, while the
dot-dashed blue line is the net melt rate m = [∂T/∂z]+− + αf (T, N, u)|u|. The solid black line is the
effective pressure proxy Π , the dashed black line the later water flux qy.

Near the onset of the ice stream (column A), the patterns of englacial flow and dissipation
are simple, with a patch of slightly warmer bed in the middle of the domain leading to faster
flow (panel A2) and enhanced dissipation (panel A3), where conductive flux Qbed (solid blue
line) is elevated at the centre of the domain to balance the additional heat generated at the
bed. The faster flow is also drawing somewhat colder ice inwards and downwards through a
convergent secondary flow (panel A1). There is nothing inconsistent in the streamlines of v⊥
converging (panel A1) despite the flow being incompressible: these streamlines are not actual
particle trajectories, as they ignore the simultaneous axial motion of the ice. Note that englacial
dissipation also begins to be shifted towards the edges of the region of fast flow.

Somewhat further downstream, the bed has become fully temperate at the centre of the
incipient ice stream (panel B2). This coincides with the formation of the very cold-based ice ridges,
and the margin of the region of fast flow migrates inwards (even as the margin of the temperate
bed migrates outwards, see figure 4b). As a result, the axial strain rate in the incipient ice ridges is
locally substantially negative, especially around y = 2.5 and y = 12.5 in figure 6b1. The transverse
streamlines are therefore locally warped upwards. This contrasts with the usual expectation of ice
being drawn downwards as it traverses an ice stream margin [12,19], but is potentially consistent
with specific field observations of englacial radar reflectors near the margins at the upstream end
of the Northeast Greenland Ice Stream similarly being warped upwards [43]. It is unclear however
whether direct comparisons with field data are a good test of theory, since the field data in [43] or
elsewhere may not correspond to steady state conditions, and spatial anomalies in G could also
play a significant role in individual locations (see also [7]).

In column B, significant subtemperate sliding occurs over a region substantially larger than
the temperate bed patch at the centre of the domain, as is reflected by the elevated basal heat
flux Qbed in panel B3. Inside the temperate bed region, an active drainage system is established.
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Figure 6. Patterns of flow, dissipation and temperature in the ice, and fluxes at the bed. Each column corresponds to a cross
section indicated by the corresponding letter label in figure 4b. Row 1 (top): contours of ∂u/∂x (black, contour interval 7
and background shading), streamlines of v⊥. Row 2 (middle): contours of temperature T (black, contour interval 0.03, and
background shading), contours of u (dashed black, contour interval 2) and α|∇⊥u|2 (white, contour interval 2), pink is the
T = 0 contour. Note that part of the bedrock domain is shown. Row 3 (bottom): basal heat flux Qice − limz→0+ (∂T/∂z) in
the ice (solid blue) and Qbed = − limz→0+ (∂T/∂z) in the bed (dashed blue), melt rate m= Qbed − Qice + αf (T , N, u)|u|
(dot-dashed blue), effective pressure proxyΠ (solid black), lateral qy (dashed black). (Online version in colour.)

The effective pressure proxy Π has a slight gradient, and does not go to zero at the edge of the
temperate region. Consequently, the bed retains a finite water content there, and basal shear stress
is discontinuous across the subtemperate–temperate boundary. Water flows from the centre of the
ice stream, where melt rates m are positive, towards the margins, where there is a small but finite
freezing rate (panel B3). This freezing rate is mathematically unavoidable in a margin where basal
shear stress is discontinuous and subtemperate sliding occurs (see [19] and §S2 of the electronic
supplementary material).

By the time cross-section C is reached, there is a fully established pattern of an ice ridge in
which there is a simple transverse ‘shallow-ice’ type shearing flow towards the margin, a clearly
defined margin, and a lateral-shear-dominated ice stream as described by Haseloff et al. [12]. In
fact, for a wide domain, it can be shown that the model we use here is equivalent to the parameter
regime described in appendix B of [44]; the advantage of our model over that in [12] is that we are
able to capture the onset of the ice stream in addition to the fully evolved form. The axial strain
rate ∂u/∂x is now significantly smaller than in the region of rapid flow reorganization around
cross-sections A and B. Consequently, the surface correction s1 is now also less pronounced than
in the onset region, and has the familiar pattern of a convex surface over the ice ridges, and a flat
surface over the ice stream.

A similar pattern of ice flow and dissipation persists further downstream along the fully
evolved ice steam (compare columns C and D). The margins exhibit the strongly concentrated
englacial dissipation (panels C2, D2) familiar from previous studies [12–20], and advection due
to the secondary flow is angled sharply downward through the margins (panels C1, D1). The
competition between these two and the effect of basal dissipation due to subtemperate sliding
ultimately control margin migration [19], although here in the sense of ice stream widening in the
downstream direction, rather than in time.

Two observations may be significant: first, the strong concentration of shear does not occur
at the transition from a temperate to a subtemperate bed. Instead, it coincides with a sharp
lateral temperature gradient between small negative temperatures near the edge of the ice
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Figure 7. (a, b) Hydromechanical instability: same parameters as figure 2b but using the double power law (2.9) and N and κ̃

defined through (B2) withΠ0 = 0.1, Ns = 0.1, k0 = 4/3,β = 0.1. Same plotting scheme as figure 4, contour interval of 1 for
u, 0.15 for T , 0.1 forΠ . (Online version in colour.)

stream, accompanied by fast subtemperate sliding, and the much lower basal temperatures of
the ice ridge. Second, no temperate ice is formed at these locations, with englacial temperatures
remaining firmly below the melting point. Both observations are consistent with previous work
on subtemperate sliding in shear margins [19], though it is conceivable that the absence of
temperate ice is the result of the moderate width of the modelled ice stream [20,45,46].

The pattern of basal fluxes on the temperate bed portion of the ice stream (panels B3–D3) also
evolves as we progress downstream: as described at the end of §3c, englacial dissipation leads to
a reduced flux into the ice (solid blue line Qice in row 3) on the ice-stream side of the margins,
causing the double-peaked Π profile in panel D3. Further englacial heating would be required to
reduce Qice further and cause temperate ice to form (which would correspond to Qice < 0 here). In
each case (panels B3–D3), lateral gradients in Π drive water towards the margins proper, where
there is a small but finite rate of freezing, and Π remains finite at the subtemperate–temperate
transition.

(e) Other forms of patterning, or no pattern at all
All ‘patterned’ three-dimensional solutions that we have described so far are based on the
two-dimensional reference case 1 of figure 2a. Even if we apply a stochastic perturbation to γ

in reference case 2 of figure 2b, no pattern emerges in three dimensions in the much shorter
subtemperate area, in which sliding velocities are also much slower. If we continue the calculation
as in figure 2b with a linear friction law (2.8), no pattern emerges at all even downstream of the
cold-temperate transition, and we simply recover the solution in figure 2b with a small amount of
noise.

A pattern can still emerge from within the temperate area if we use an effective-pressure-
dependent sliding law: figure 7 results from replacing the linear friction law (2.8) in the calculation
of reference case 2 of figure 2 with friction given by an effective pressure-dependent double
power-law (2.9), and then perturbing the friction coefficient γ0 stochastically as was done in
figure 3. As in the original case 2 reference calculation (column 2 of figure 2), the entire bed
becomes temperate around x ≈ 0.9, with no apparent patterning as described above. Around
x ≈ 1.7 a pattern rapidly emerges within the temperate bed, with a patch of low effective pressure
N (large Π ) facilitating sliding and drawing in ice through the secondary transverse flow. The
ice flow surrounding the patch of low effective pressure slows (as it must, since total ice flux is
prescribed). Dissipation there is reduced and the bed refreezes.

Once again, an ice-stream-ice-ridge pattern forms, with very low bed temperatures in the ice
ridges. The corresponding cross-sectional patterns of flow, dissipation and temperature in the ice
for this case are shown in the electronic supplementary material, §S3. The formation of the ice-
steam-ice-ridge pattern in this case is closely related to the mechanisms in [5–7], as discussed
further in §5. Patterning in this instance is driven by a hydromechanical positive feedback
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between dissipation, increased discharge of additional meltwater requiring reduced effective
pressure, and reduced effective pressure leading to faster sliding and increased dissipation. This
feedback does not, however, unconditionally lead to the formation of a recognizable ice stream
pattern: in the electronic supplementary material, §S3, we showcase an example in which a slight
lateral perturbation in effective pressure and velocity grows over a limited stretch of the ice sheet,
only to disappear again further downstream, without ever forming a distinct ice stream margin.

In fact, for many plausible parameter choices, we have found no pattern formation due to the
hydromechanical feedback at all. Overall, the question of negative feedbacks that act to suppress
pattern formation remains open. We address this next.

4. Stability analysis
The numerical solutions in the previous section raise the question of why (and where) patterning
appears in some of the steady-state solutions, but not others. Here, we show that patterning can
be understood as a ‘spatial’ instability. Rather than asking whether perturbations to a laterally
uniform steady state grow in time, we use the time-like nature of x to identify conditions under
which perturbations in upstream conditions (at the divide) or in forcing (such as the stochastic
perturbations to γ0 that we have used numerically) are amplified as we move downstream. Similar
notions of spatial stability have previously been used to study the growth of basal channel along
the base of an ice shelf [47] as well as ice stream formation using a simpler model than ours [5].

We conduct our linear stability analysis in the limit of small δ, and confine ourselves to
the case of patterning in the subtemperate region. We will show that patterns can grow in the
downstream direction if sliding velocities in the subtemperate region exceed a certain threshold.
The hydraulically controlled onset of patterning during temperate sliding is studied in more
detail in the electronic supplementary material (§S5.7), as is the onset of patterning during
subtemperate flow for the more general case δ = O(1) (§§S5.1–S5.4).

Recall that δ � 1 is the bed temperature scale over which the ice sheet transitions from
insignificant to fully temperate sliding. We can identify a similarly short thermal boundary layer
length scale z ∼ δ over which those temperature variations occur naturally near the bed, and
a corresponding along-flow distance scale x ∼ δ2 such that advection and diffusion balance in
the basal thermal boundary layer for Pe ∼ O(1) (see also [27]). This turns out to be (formally)
the length scale over which the onset of patterning takes place in figure 3. We can capture the
dominant processes involved by rescaling

Z = δ−1z and X = δ−2x, (4.1)

and putting Θ(X, y, Z) = δ−1T(x, z). X is a local along-flow coordinate, while Z is distance above
the bed in the thermal boundary layer; z will continue to describe distance above the bed in the
‘outer’ region that occupies most of the ice thickness. Implicit here is that δ2 � ε where ε is the ice
sheet aspect ratio, so that the local variable X still describes displacements that are much larger
than the ice thickness scale, and the shallow-in-x model of §2 continues to apply.

A rapid onset also alters the scale for the secondary ice flow, as faster transverse velocities are
required to balance the potentially large velocity gradient ∂u/∂x ∼ O(δ−2). We put Uo(X, y, z) =
u(x, y, z), Vo(X, y, z) = δ2v(x, y, z), Wo(X, y, z) = δ2w(x, y, z), Po = δ2p(x, y, z) in the outer region,
distant from the bed, and put Ub(X, y, Z) = Uo(X, y, z), Vb(X, y, Z) = Vo(X, y, z), Wb(X, y, Z) =
δ−1Wo(X, y, z) in the thermal boundary layer, the latter to account for the fact that vertical velocity
vanishes at the bed. A rescaling of the mechanical problem to the thermal boundary layer variable
Z and matching with its outer version shows that Ub = Uo(x, y, 0), Vb = Vo(x, y, 0) and Wb = WbZZ,
where WbZ = ∂Wb∂Z = limz→0(∂Wo/∂z), and Ub, Vb, WbZ are all independent of Z at leading order.

Ice thickness remains constant at leading order over the scale associated with X, which
describes an internal layer with respect to the outer coordinate x inside the ice sheet, but the
surface slope may change by O(1). Formally, this can be accounted for by putting H(X) = h(x) and
expanding H(X) = H̄ + δ2H1(X), so that dh/ dx = dH1/ dX while ice thickness remains constant
at H̄. In full, the mechanical problem consisting of (2.4), (2.5), (2.13), (2.14)–(2.15) and (2.16)–(2.17)
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becomes

∇2
⊥Uo = − ∂b

∂x
− ∂H1

∂X
on 0 < z < H̄,

∂Uo

∂z
= Γ (Θ(0))Uo on z = 0,

∂Uo

∂z
= 0 on z = H̄, (4.2a)

where ∂b/∂x is constant at the inner horizontal scale associated with X and Γ (Θ) = γ (T), and the
rescaling ensures that dΓ/ dΘ ∼ O(1). In addition

∇2
⊥(Vo, Wo) − ∇⊥Po = 0,

∂Vo

∂y
+ ∂Wo

∂z
= −∂Uo

∂X
(4.2b)

on 0 < z < H̄, subject to

Wo = 0,
∂Vo

∂z
+ ∂Wo

∂y
= Γ (Θ(0))Vo/Uo at z = 0, Wo = ∂Vo

∂z
= 0 at z = H̄ (4.2c)

while the surface perturbation H1(X) is independent of (y, z) and determined by the constraint

Q = ∫W
0

∫H̄
0 U dz dy = constant.

At leading order, we obtain a thermal boundary layer problem of the form

Pe
(

Ub
∂Θ

∂X
+ Vb

∂Θ

∂Y
+ WbZZ

∂Θ

∂Z

)
− ∂2Θ

∂Z2 = 0 for Z > 0 (4.3a)

− ∂2Θ

∂Z2 = 0 for Z < 0 (4.3b)

and
[
−∂Θ

∂Z

]+

−
= Γ (Θ(0))U2

b , [Θ]+− = 0 at Z = 0, (4.3c)

The outer thermal problem is advection-dominated in the ice and diffusion-dominated in the bed.
At leading order, matching of (4.3) with the far field therefore requires that

Ub
∂Θ

∂X
+ Vb

∂Θ

∂Y
+ WbZZ

∂Θ

∂Z
∼ 0 and − ∂Θ

∂Z
∼ − lim

z→0−
∂Θ

∂z
= G (4.4)

as Z → +∞ and Z → −∞, respectively.
The solutions without lateral structure computed in §3b are functions of x and z, and

consequently are constant in the rescaled variable X at leading order. If we take those two-
dimensional solutions as a base state and consider their stability to pattern formation in three
dimensions with X as the time-like variable, we can therefore linearize and treat the base state
as uniform. Denoting the base state by overbars and putting θ = −(h + b)x, evaluated locally, we
have V̄b = W̄bz = 0 and Γ̄ Ūb = hθ , where Γ̄ = Γ (Θ̄(0)), as well as Θ̄ = Θ̄(0) − GZ for Z < 0 and
Θ̄ = Θ̄(0) − (G + Γ̄ Ū2

b )Z for Z > 0. We perturb the base state as

Ub = Ūb + U′
b exp(ΛX + iky), Vb = V′

b exp(ΛX + iky),

WbZ = W′
bZ exp(ΛX + iky), Θ = Θ̄(Z) + Θ ′(Z) exp(ΛX + iky),

}
(4.5)

and linearize in the perturbations, where we assume that k �= 0; since the ice thickness variation
term H1 is independent of y, there is then no need to incorporate H1 in the linearization.

In the usual fashion, a positive growth rate �(Λ) indicates the growth of perturbations, albeit
in the downstream direction rather than in time. Solving the appropriate linearized version of
(4.2), we find that the perturbations in vertical velocity gradient and in basal dissipation can be
expressed in terms of Θ ′(0) as

W′
bZ = Wz0Θ

′(0), 2Γ̄ ŪbU′
b + Γ ′Ū2

b = η0Θ
′(0), (4.6)
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Figure 8. Plots of η̆0 = η0/(−αΓ̄Θ Ū2b) (a) and W̆z0 = Wz0/(−Γ̄θ Ūbh) (b) as functions of kh for Γ̄ h = 0.1 (red), Γ̄ h =
1 (blue) and Γ̄ h= 10 (black). Note that η̆0 and W̆z0 thus defined are functions of Γ̄ h and kh only. As Γ̄Θ < 0, η̆0 and W̆z0

also have the same sign asη0 andWz0, respectively. Physicallyη0 represents the feedback between bed temperature and basal
dissipation for a given wavenumber, whileWz0 represents the effect of basal temperature on vertical advection near the bed.
(Online version in colour.)

where Γ ′ = Γ̄ΘΘ ′(0) is the perturbation in Γ , and

Wz0 = Γ̄Θ Ūbh
sinh(kh) cosh(kh) − kh

2kh sinh2(kh) + Γ̄ h[sinh(kh) cosh(kh) − kh]
(4.7)

and η0 = −αΓ̄Θ Ū2
b
Γ̄ h cosh(kh) − kh sinh(kh)
Γ̄ h cosh(kh) + kh sinh(kh)

. (4.8)

Here and below, we use the shorthand Γ̄Θ = dΓ/ dΘ|Θ=Θ̄(0). The functions Wz0 and η0 are plotted
in figure 8.

Since basal friction decreases with increasing temperature, we have Γ̄Θ < 0. Defining the
unperturbed basal heat flux above the bed as Q0 = − limZ→0+ dΘ̄/ dZ = G + Γ̄ Ū2

b , equal to the
sum of geothermal heat flux and the unperturbed basal dissipation rate, the linearized heat
equation in the basal boundary layer (4.3a) becomes

Λ
(
Pe ŪbΘ

′(Z) − Pe Wz0Q0ZΘ ′(0)
)− d2Θ ′

dZ2 = 0 (4.9a)

for Z > 0, while the heat equation (4.3b) in the bed trivially yields dΘ ′/dZ = 0 for Z < 0. The
boundary and matching conditions (4.3c) and (4.4) become

dΘ ′

dZ
+ η0Θ

′ = 0 at Z = 0 and
dΘ ′

dZ
∼ Wz0Q0

Ūb
as Z → ∞. (4.9b)

The eigenvalue problem (4.9) can also be derived as a parametric limit for δ � 1 from a more
general spatial stability problem for a parallel-sided slab of ice subject to subtemperate sliding at
its base, as described in the electronic supplementary material, §S5.5. (4.9) has solution

Θ(Z) = Θ(0)
[

exp
(

−
√

ΛPe ŪbZ
)

+ Wz0Q0Z

Ūb

]
, (4.10)

where the eigenvalue Λ satisfies
√

ΛPe Ūb = η0 + Wz0Q0/Ūb, and
√

ΛPe Ūb must have a positive
real part (and therefore must be real and positive) in order to satisfy the matching condition
(4.9b)2. Hence we require

η0 + Q0Wz0

Ūb
> 0, (4.11)

for a solution of this form to exist.
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Figure 9. Contours of η̆0 + (γ̄ h + Gh/(αŪb)2)W̆z0 = (αΓ̄Θ Ū2b)
−1(η0 + Q0Wz0/Ūb) against kh and Gh/(αŪ2b) for γ̄ h=

0.1 (a), γ̄ h= 1 (b) and γ̄ h= 10 (c). Seefigure 8 for the definitions of η̆0 and Q̆z0. The solid black line is the zero contour. A viable
solution of the form (4.10) exists if the contoured quantity is positive (below the solid black line), in which case the growth rate
is proportional to the square of the contoured quantity, see equation (4.12), and the solution is automatically unstable. (Online
version in colour.)

When (4.11) is satisfied, the eigenvalue is positive and instability results:

Λ = 1

Pe Ūb

(
η0 + Wz0Q0

Ūb

)2
. (4.12)

Note that η0 is positive for small k but changes sign at some finite k, while Wz0 is always negative
(figure 8). Consequently, we have stabilization of small wavelengths, since (4.11) is violated for
large enough k. Recall that η0 represents the feedback between raised basal temperature Θ ′(0) and
dissipation at the bed (see equation (4.6)). That feedback consists of two competing components:
raising Θ ′(0) has the direct effect of reducing the basal friction coefficient, and therefore of
reducing basal dissipation (the second term on the left-hand side of (4.6)2). It also has the indirect
effect of allowing faster sliding, which increases dissipation (the first term on the right-hand
side). At short transverse wavelengths, or large k, basal velocity variations are suppressed by
lateral shear stress is in the ice [48,49], and the negative feedback dominates. At larger transverse
wavelengths, these basal velocity variations invariably become large enough to dominate the
feedback mechanism.

The stability criterion (4.11) shows that we must have a positive feedback with η0 > 0 in order
for instability to occur as described, but that is insufficient; η0 must in fact exceed a positive
threshold −Wz0Q0/Ūb, which represents the stabilizing effect of downward advection of cold ice
as the downstream velocity Ūb increases.

Next, we extract from (4.11) an explicit criterion for instability in terms of model parameters.
The dispersion relation (4.12) demonstrates that there is no wavelength selection at long
wavelengths: if there is an unstable mode for a given set of parameters, the fastest growing
wavenumber is always the limit k → 0 (or kh → 0, see figure 9). This is consistent with
only a single ice stream forming in the domain in the numerical solutions (see also §5 and
electronic supplementary material, §S5.9–S5.10). In the limit k → 0, we have η0 ∼ −αΓ̄Θ Ū2

b , Wz0 ∼
Γ̄Θ Ūbh/(Γ̄ h + 3), as well as Q0 = αΓ̄ Ū2

b + G, so that (4.12) gives
√

Pe ŪbΛ ∼ −αΓ̄Θ Ū2
b [3/(Γ̄ h) −

G/(αΓ̄ Ū2
b )]/[1 + 3/(Γ̄ h)] and we see that the criterion for instability (the right-hand side of the

equation is positive) is that Gh/(αŪ2
b ) < 3, or

Ū2
b >

Gh
3α

. (4.13)

This is the criterion we seek: for a given geothermal flux G, Brinkmann number α and ice thickness
h, the subtemperate sliding velocity Ūb needs to exceed a threshold value before the spatial
pattering instability first occurs in the manner predicted above.

Note that the instability criterion is based on the ‘viability’ of the thermal boundary layer
solution, requiring that the eigenfunction solution (4.10) can match with an advection-dominated
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outer region, with the exponential part of the solution decaying in Z. If there is no viable solution
of the form (4.10), this does not mean that we cannot formulate a stability problem, or even
that there is necessarily no instability. It does mean that any growing mode is no longer of
a boundary-layer type, and does not grow as rapidly with Λ ∼ δ−2: instead, we obtain slowly
growing solutions that satisfy T′ = 0 at z = 0 at leading order. These can in fact have eigenvalues
with real parts. However, the corresponding e-folding lengths are then comparable with ice sheet
length, contrasting with e-folding lengths of δ2 times ice sheet length for the boundary layer
solution (4.10): in that case, an initial perturbation might grow by a multiple of itself over the
full length of the subtemperate region, but is unlikely to lead to a fully formed ice stream. The
electronic supplementary material provides further detail in §S4.

The instability criterion (4.11) explains why there is an extended region of slower subtemperate
sliding upstream of the rapid transition to patterned flow in figure 3: patterning does not occur as
soon as appreciable sliding appears. Recall however that figure 3a is misleading, since the point
at which we perceive the pattern is a fairly large number of spatial e-folding lengths from the
location at which pattern growth is initiated, depending on the level of noise in the system. This
is illustrated in figure 3b, which shows the lateral variance of basal temperature

var(T)(x) = W−1
∫W

0

[
T(x, y, 0) − W−1

∫
T(x, y′, 0) dy′

]2
dy, (4.14)

as a function of x. We see that var(T) begins to grow at x ≈ 0.7, while the pattern does not reach
an O(1) amplitude, with the bed becoming partly temperate, until x ≈ 1.4.

In fact, the dispersion relation (4.12) predicts that pattern growth should start at a
location further downstream (x ≈ 0.9) than the location where var(T) actually starts to exhibit
approximately exponential growth at comparable rates with those predicted by (4.12). The red
curve in 3a3 shows a plot of

var∞(T)(x) = c exp
(

2δ−2
∫ x

x0

Λ(x′) dx′
)

(4.15)

against x, the constant c chosen to make the plot visible and x0 being the first location at which
a viable solution (4.12) to the eigenvalue problem appears, having linearized locally around the
two-dimensional reference solution in figure 2a and chosen k = 2π/W as the smallest non-zero
mode to fit into the domain. Formula (4.15) is the form of the variance in T one would expect
from our linearized problem if we account for the fact that parameters in the linearization change
slowly with x.

Clearly, the red curve in 3b misses part of the original growth in the variance shown in blue.
The most likely explanation for why equation (4.12) underpredicts pattern growth is that the
asymptotic solution relies on separation into an inner region in which diffusion appears at leading
order, and an outer region in which the temperature problem is advection-dominated: (4.9b) arises
from a purely advective temperature field in the outer region, justified at leading order because
δ−2Pe � 1 is the effective Péclet number in the outer region. In advection–diffusion problems, the
effects of diffusion can be significant even at relatively large Péclet numbers (see, e.g. [19] for
a glaciological example). We demonstrate in the electronic supplementary material (§S5.5) that
this is also the case here, by comparing the asymptotic solution presented above with a stability
analysis that resolves the full depth of the ice.

Nonetheless, the effectively conditional nature of the spatial instability explains why, in some
cases, there is no pattern formation at all in the subtemperate region: subtemperate sliding speeds
may never get large enough to exceed the threshold value for initiating pattering, as is the case
for reference case 2 in figure 2b. In fact, even if that threshold is passed, unstable growth of the
pattern may not need to lead to a fully formed ice stream if the region of subtemperate sliding is
too short and therefore comprises too few e-folding length scales before the boundary with the
temperate bed is reached.
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5. Discussion
We have modelled the formation of ice streams through positive feedbacks between sliding and
dissipation at the bed, using a novel thermomechanical model built on ‘shallow ice’ balances in
the along-flow direction while fully resolving lateral shear stress and the secondary transverse
flow. The model is a natural generalization of early work on thermomechanical ice sheet flow by
Hutter et al. [21] and Yakowitz et al. [22].

For subtemperate sliding, the feedback leading to ice stream formation is simple: locally
warmer temperatures reduce friction, and will lead to faster sliding. How much faster depends
on the length scales involved: for warmer temperatures confined to a narrow region (or a periodic
temperature perturbation with a short wavelength, comparable with ice thickness or smaller for a
subtemperate flow with significant vertical shearing), the acceleration in flow will be suppressed
by lateral shear stresses. Local warming of the bed results in a net increase in basal dissipation
and therefore further heating if basal temperatures are elevated over a sufficiently large span of
the bed (i.e. if the basal temperature perturbation has a sufficiently long lateral wavelength): the
reduction in friction in isolation has the effect of reducing dissipation. Faster sliding, not affected
excessively by lateral shear stresses, is key to increased dissipation.

In a steady-state setting, the positive feedback can lead to ice flow accelerating with distance
in the downstream direction to form a ‘finger’ of faster-flowing ice surrounded by slower-moving
ice: an incipient ice stream. In doing so, the accelerating flow will draw in colder ice from above
and the sides, generating a negative cooling feedback that must be overcome. That is the basis of
the pattern-forming instability criterion (4.11). Where this is satisfied, our model predicts a length
for the size of the onset region as δ2 times ice sheet length, where in dimensional terms δ−1 =
γT(Ts − Tm)/γ , γT being the (dimensional) temperature derivative of the basal friction coefficient
γ at the melting point Tm, and Ts being surface temperature. With a short onset region, a fully
evolved ice stream-ice ridge pattern forms downstream, with sharply defined margins that slowly
move apart in the downstream direction (§3c–d).

Being able to resolve the margins helps reveal the significant (typically ∼ one ice thickness
wide) region of subtemperate bed that lies inside the ice stream as defined by the velocity pattern
(figures 4 and 6). Such a zone of rapid subtemperate sliding at the edge of an ice stream was
previously predicted by [19]. Resolving the margins and the processes that cause their position to
shift allows us to explore the effect of different parametrizations of basal friction and hydraulics
on ice stream geometry: for instance, we find that drainage systems with more efficient lateral
transport tend to generate ice streams that widen more significantly in the downstream direction,
but have higher effective pressures and lower velocities in the ice stream centre (figure 5).

The clearest precursor to our work is due to Hindmarsh [10]. While he motivates his
model by appealing to concentrated, temperature-dependent shear near the bed, Hindmarsh’s
mathematical formulation is a plug flow, sliding is fast and friction varies relatively slowly with
temperature. These constraints correspond to the limit of δ ∼ O(1), γ0 � 1 in our model.

While our model can be solved and analysed for Hindmarsh’s parameter regime, our analysis
has focused on the alternative regime of a shearing flow in which friction is highly sensitive to
basal sliding (δ � 1, γ0 ∼ O(1)). The latter choice of parameter regime conforms to the expectation
that basal sliding is significant only at temperatures close to the melting point [11,27,50,51]. There
are some graphically obvious differences between the solutions, with our model allowing the
formation of narrow margins and incorporating a hydrological component (which Hindmarsh’s
[10] model description does not mention), the two limits used here and in Hindmarsh’s prior
work have less obvious but still important differences.

The most significant is the role of downward advection of cold ice in potentially preventing
steady-state patterns from forming in our analysis in §4. That downward advection is closely
associated with a vertical ice column being able to accommodate at least some shearing. For a pure
plug flow, an acceleration in the downstream direction is still balanced purely by a commensurate
acceleration in the secondary, transverse flow, which is however then also a plug flow and has no
significant vertical component (see electronic supplementary material, §S5.6). As a result, the case
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of rapid subtemperate sliding is potentially more prone to pattern formation. Further work is
needed to determine whether flows with stress- or temperature-dependent viscosity are likewise
more unstable to patterning, with Hindmarsh [10] viewing rapid basal slip as an idealization for
the resulting concentrated shear.

Where no pattern emerges in the region of subtemperate sliding, the hydrological component
of our model also captures the alternative, hydromechanical feedback mechanism for ice stream
formation due to [5] and [6,7] within a unified framework. Here, bed temperature is fixed at the
melting point. Instead, a region of depressed effective pressure will, for a typical basal friction
law, lead to reduced friction, faster flow and, for a sufficiently wide such region, to greater basal
dissipation in much the same way as the temperature–dissipation feedback. With a hydraulic
model in which the additional melt that results must be evacuated through an enlarged set of
basal conduits at a reduced effective pressure, a positive feedback results. This can likewise lead
to the formation of an ice-stream-ice-ridge pattern.

One of the advantages of our work over previous models of hydromechanical pattern
formation [5–7] is in fact our ability to capture the refreezing of the bed that occurs in the ice
ridges, and the thermomechanics of the margins: one notable difference between our results and
those in Kyrke-Smith et al. [6,7] is that our ice stream widens in the downstream direction, while
theirs narrows, which may be the result of our model incorporating englacial heating and a more
careful treatment of heat transport: the thermal model in Fowler & Johnson [5] and Kyrke-Smith
et al. [6,7] is based on a similarity solution for a two-dimensional thermal boundary layer [52],
which omits lateral heat transport. The validity of that thermal model, especially in the presence
of a frozen bed under the ice ridges, and of narrow shear margins, is questionable, while their ice
flow model is also not strictly suitable for narrow shear margins (see also [12]). In comparing our
results with those of [6,7], note however also that our hydrological models differ somewhat: the
steady-state version of their model predicts a permeability that depends not only on N but also
on sliding velocity, and the functional relationship between κ and N differs from our power law.

A major disadvantage of our model is that it will spontaneously produce only a single ice
stream per periodic domain unless forced strongly with a shorter wavelength. This feature is
shared with the model in [5] but not with [6,7,10], and can most likely be traced to the ease
with which the transverse, secondary flow is able to maintain a laterally flat upper surface of
height h(x) at leading order in our model: because we operate at lateral length scales comparable
with ice thickness, the surface correction s1 that drives the lateral pressure gradient driving the
secondary flow (visualized in figure 6) never gets large enough to affect the downstream velocity
u. The thickened ice in the ice ridges, no matter how wide these are in the model, therefore
never has any propensity to accelerate that downstream flow and create a new region of faster
flow through enhanced dissipation. This, and a possible fix (albeit one that is computationally
costly), is discussed in greater detail in the electronic supplementary material (§§S5.9–S5.10).
There we argue that the appropriate lateral length scale at which pattern growth should be
suppressed is the same as the along-flow length scale for ice stream onset, ∼ δ2 times ice
sheet length. If confirmed (which is beyond the scope of this paper), that would imply that
the width of ice streams at their onset is determined by the sensitivity of basal friction to
temperature.

The inclusion of lateral shear stresses and the Stokes flow model describing the transverse,
secondary flow by considering lateral length scales comparable with ice thickness is key in two
regards: first, it ensures that growth of short wavelengths is suppressed through lateral shear
stresses (§4). Second, it ensures the ability to capture heat production in, and heat transport
through, the narrow margins that form once the ice stream is fully established (figure 6). Note
however that the model is does not include extensional stresses in the along-flow direction, by
contrast with what are now standard formulations for ice stream flow [10,53,54].

Although we have no proof, the steady-state version of our model appears well-posed as an
initial value problem that can be integrated efficiently, and uniquely, from an ice divide (§3a
and electronic supplementary material, §S3). Hanging over our results is the spectre of temporal
instabilities, and in fact, even the question of well-posedness as a time-dependent problem.
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Myriad such instabilities were catalogued in [27] for ice flow with subtemperate sliding. Although
formally studied in a different parametric limit (δ2 ∼ ε instead of our δ2 � ε), the instability
mechanism in §3 of [27] is likely to be relevant to our model in only slightly modified form.
In abstract terms, the mechanism is one of amplification of travelling temperature waves through
a phase lag between heat flux and basal temperature introduced by vertical diffusion of heat in
the bed. That phase lag leads to a small horizontal and therefore vertical strain rate in ice near
the bed that ends up amplifying the basal temperature gradient through advection. The basic
physical ingredients for the same instability to occur are contained in our model, and the physical
balances involved suggest that it should appear at wavelengths ∼ δ2 times the ice sheet length.

The fact that our patterned solutions involve largely featureless areas of significant
subtemperate sliding upstream of ice steam onset therefore suggests that we should expect to
see a similar temporal instability play out there; this clearly calls for further study. In fact, careful
analysis of the instability (§S4 of the supplementary material to [27]) suggests that the instability is
suppressed at short wavelengths because the horizontal strain rates involved require extensional
stresses that cannot be sustained at short along-flow wavelengths. The model developed in the
present paper, being of ‘shallow ice’ type in x, omits these extensional stresses. This suggests
that the full set of Stokes equations may be necessary to model time-dependent ice stream onset
due to subtemperate sliding feedbacks. Note also that Kyrke-Smith et al. [54] observe wave-
like features in their temperate-bedded model, and further research is also needed to determine
whether extensional stresses are a necessary ingredient in modelling the temporal dynamics of
hydromechanically generated ice streams.

As already discussed in [11], the plug flow model of Hindmarsh [10] does not appear to suffer
from the same instability, as patterns in [10] are computed by forward integration in time and yet
are steady, without any wave-like or oscillatory features. It is likely that this is again the result of
not including vertical shearing in his model: it is relatively easy to show that the extensional strain
rates required in §3 of [27] cannot be generated in a pure plug flow, since the depth-integrated flux
must remain divergence-free. This also serves as a note of caution when treating concentrated
basal shearing as a form of sliding with the ice acting as a pure plug flow, since the shear layer
could be susceptible to temporal instability that a pure plug flow model may not capture.

There are two other ice sheet models that have reported ice stream flow that appears to
converge robustly under grid refinement [55,56]. These are more difficult to compare with our
work, primarily because they retain a temperature-dependent viscosity combined with vertical
shearing in the ice. As a result, pattern formation in their results may be driven by the dissipation–
viscosity feedback. Their sliding formulations also differ from ours: Brinkerhoff & Johnson [56]
use a piecewise constant friction law of the form (2.8), with different values of γ0 for T < 0 and
T = 0. In the confines of our model, it is difficult to see how such a friction law alone would lead
to a feedback that generates patterns.

The model due to Bueler & Brown [55] poses some thornier problems. Instead of regularizing
the transition from no slip to temperate sliding using a subtemperate sliding law (see also
[50,57]), Bueler and Brown ‘blend’ solutions of two thin-film models across an abrupt change
in basal boundary conditions. As with a subtemperate law, the purpose is to avoid the sharp
vertical advection that causes the immediate refreezing for a hard switch between no slip to fully
temperate sliding. In our view, it is the (somewhat ad hoc) choice of the blending function f (their
eqn (22)) that solves the refreezing problem, rather than the retention of extensional stresses in
one of their thin-film flow models: Mantelli et al. [11] show that the retention of such stresses does
not generally solve the problem of refreezing in flow across a hard switch from no slip to fully
temperate sliding. Further work is required to determine how the ice streams in [55] relate to
those in other models relying on more directly physics-based descriptions such as [10].

6. Conclusion
We have shown that temperature-dependent, subtemperate sliding can lead to pattern formation
in ice sheets, with clearly defined ice streams emerging. This behaviour is not universal, and
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if sliding velocities in the region of subtemperate sliding remain too slow, the onset of fully
temperate sliding can remain laterally uniform. The model we have developed is also able to
capture the formation of ice streams through hydromechanical feedbacks in temperate sliding
within the same framework.

Numerous questions remain to be resolved. Chief among these is the question of temporal
stability: our model can be solved straightforwardly in steady-state form, and we have not
addressed temporal instabilities here, though prior work in [27] suggest that they should be an
issue. In fact, it is possible that a more sophisticated model may be necessary for time-dependent
calculations, solving a fully three-dimensional Stokes flow model at least near the onset of ice
stream flow to capture the full zoology of instabilities in [27]. In turn, that poses the question of
the form of a tractable model that can capture ice stream onset in the context of continental-scale
ice sheet simulations: solving the Stokes equations at sub-ice-thickness resolution as required here
is not feasible for such simulations at present. Adaptive meshing around ice stream onset regions
may be one approach, or alternatively it may be possible to treat the onset region as an internal
layer within a model that relies on thin-film formulations for ice flow, in a form similar to internal
layer models for ice stream shear margins that have been developed recently [12,19].
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Appendix A. Stretched vertical coordinate system
In the numerical solution of the model of §2, we apply a vertical coordinate stretching in order
to be able to use finite volumes with regularly shaped volumes. We define the standard vertical
coordinate transformation ζ = z/h, X = x, Y = y, τ = t [39], leading to the differentiation rules

∂

∂x
= ∂

∂X
− ζ

h
∂h
∂X

∂

∂ζ
,

∂

∂y
= ∂

∂Y
,

∂

∂z
= 1

h
∂

∂ζ
,

∂

∂t
= ∂

∂τ
− ζ

h
∂h
∂τ

∂

∂ζ
.

For the majority of the equations in the model, the transformation leads only to trivial changes, as
the equations do not contain derivatives with respect to x, or contain x-derivatives of quantities
that do not depend on z or ζ , namely h and Π . The only exceptions are (2.1) and (2.11). The use
of finite volumes requires that we keep the transformed versions of these equations in divergence
form, which can be shown to be

Pe
[

∂(hT)
∂τ

+ ∂(uhT)
∂X

+ ∂(hvT)
∂Y

+ ∂(weffT)
∂ζ

]

+
[

∂

∂y

(
h
∂T
∂y

)
+ ∂

∂ζ

(
1
h

∂T
∂ζ

)]
= αh

[(
∂u
∂y

)2
+ 1

h2

(
∂u
∂ζ

)2
]

(A 1)

and
∂(uh)
∂X

+ ∂(hv)
∂y

+ ∂weff

∂ζ
= 0, (A 2)

where

weff = w − ζ

(
u

∂h
∂X

+ ∂h
∂τ

)
. (A 3)

Further detail about the numerical implementation can be found in the electronic supplementary
material.
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Appendix B. Transformation of the basal hydrology model
In order to handle the difficulties of a vanishing bed permeability that requires infinite effective
pressures, we use a transformation to a new pressure-like variable Π , N =N (Π ) with a suitably
chosen function N . The basal hydrology problem (2.23)1 then becomes

e = Φ̃(Π ), qx = −κ̃(Π )
∂(h + r−1b)

∂x
(B1a)

and qy = −κ̃(Π )
∂σnn

∂y
+ βκ̃(Π )

∂N
∂Π

∂Π

∂y
, σnn =

(
p − 2

∂w
∂z

)∣∣∣∣
z=0

, (B1b)

where Φ̃(Π ) = Φ(N (Π )), κ̃(Π ) = −κ(N (Π )). Assuming κ is monotonically decreasing, N can be
chosen to satisfy the differential equation

− κ(N (Π ))
dN
dΠ

= κ2 (B1c)

for a constant, positive κ2. Defining κ̃(Π ) = κ(N (Π )), this allows us to re-write qy in the general
form

qy = −κ̃(Π )
∂σnn

∂y
− βκ2

∂Π

∂y
. (B1d)

This transformation makes sense if N is strictly monotone (and therefore invertible), maps
N = ∞ to Π = 0 (which implies that ∂N /∂Π < 0), and if κ̃ is an increasing function of Π that
has a finite limit as Π → 0. We assume that all of these are the case. As a concrete example,
consider a power law κ(N) = N−k0 with k0 > 1, in which case N (Π ) = Π−1/(k0−1), κ̃ = Πk0/(k0−1),
κ2 = 1/k0 − 1. Computationally, we regularize these to remain differentiable at Π = 0 as

N (Π ) = (Π2 + Π2
0 )−k0/[2(k0−1)]Π and κ̃(Π ) = (Π2 + Π2

0 )1/[2(k0−1)]Π . (B2)

With these assumptions, the hydrology model in isolation turns into a nonlinear diffusion
problem for Π with x as the time-like direction and y remaining space-like, provided we maintain
a positive geometric potential gradient (−(∂(h + r−1b))/∂x > 0) and permeability decreases with
increasing effective pressure (∂κ̃/∂Π > 0). One of the corollaries is that we cannot handle
permeabilities κ(N) that increase with effective pressure, as is characteristic of channel-like
drainage conduits [20,58–60]. That should however not be surprising, as the spontaneous
localization of channelized drainage onto single conduits is at odds with the distributed drainage
assumed by a macroporous drainage model of the form (2.23). Note also that the assumption
that water storage Φ in (2.23)1 goes to zero as N → ∞ now also translates into e = Φ → 0 as
Π → 0+. Consequently, the boundary condition (2.27) at an inward-migrating margin translates
into prescribing Π = 0 there. Likewise, the Dirichlet condition (2.24) becomes T = 0 at z = 0 where
Π > 0.
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